Unwarping confocal microscopy images of bee brains by nonrigid registration to a magnetic resonance microscopy image.
نویسندگان
چکیده
Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain.
منابع مشابه
Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains.
This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image ...
متن کاملSegmentation of Three-Dimensional Images Using Non-Rigid Registration: Methods and Validation with Application to Confocal Microscopy Images of Bee Brains
This paper describes the application and validation of automatic segmentation of three-dimensional images by non-rigid registration to atlas images. The registration-based segmentation technique is applied to confocal microscopy images acquired from the brains of 20 bees. Each microscopy image is registered to an already segmented reference atlas image using an intensity-based non-rigid image r...
متن کاملBee Brains, B-Splines and Computational Democracy: Generating an Average Shape Atlas
We describe a method to generate an average atlas from segmented 3-D images of a population of subjects. Using repeated application of an intensity-based non-rigid registration algorithm based on third-order 3-D B-splines, a sequence of average label images is created. Averaging of the non-numerical label data employs a generalization of the mode of sets of corresponding voxels, parameterized b...
متن کاملEvaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI
Correction of echo planar imaging (EPI)-induced distortions (called "unwarping") improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired ...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2005